The Role of Nutraceuticals in the Prevention and/or Treatment of COVID-19: An Umbrella Review

Randa Karzon,1 Grad Cert, Andrew Jackson,2 ND, Iva Lloyd,3 ND, Alexander Hall,4 ND, and Lauren Lee,5 BHSc

ABSTRACT

Background: To identify the results of published review literature regarding nutraceuticals, including probiotics, melatonin, poly-unsaturated fatty acids (PUFAs), quercetin, N-acetyl cysteine (NAC), and propolis as they relate to the prevention and/or treatment of COVID-19 (CV) and/or long COVID (long CV) and to outline key areas to consider for clinical application and for further research.

Methods: This paper is part of a six-part umbrella review which progresses from a living review. This review incorporates systematic reviews and narrative reviews as they relate to nutraceuticals. A live literature search occurred monthly in PubMed and Google Scholar from May 2022 to May 2023. Assessing the Methodological Quality of Systematic Reviews Version 2 (AMSTAR-2) scoring assessed systematic review quality, while the Scale for the Assessment of Narrative Review Articles (SANRA) guidelines evaluated narrative reviews. Only those studies that were relevant to the nutraceuticals outlined above and that addressed COVID-19 prevention and/or treatment of CV and/or long CV were extracted from each review.

Results: Fifteen narrative reviews and 16 systematic reviews were included in this umbrella review. Studies indicate that nutraceuticals may be beneficial in improving the rate of recovery from various COVID-19 symptoms, rate of conversion parameters such as rate or duration of hospital stay and risk of intensive care unit (ICU) admission, and an improvement in various laboratory tests.

Conclusion/Summary: The broad antioxidant, anti-inflammatory, antiviral, and immune modulatory characteristics make the nutraceuticals included in this review reasonable choices for further research. Of the nutraceuticals discussed above, probiotics, melatonin, NAC, and quercetin indicate the greatest potential for benefit in the prevention and treatment of COVID-19 and long CV.

Key Words Anti-viral, anti-oxidant, anti-inflammatory, complementary therapies, immune system, naturopathic medicine, nutritional medicine, respiratory syndrome, SARS-CoV-2 vitamins, minerals

INTRODUCTION

The first cases of atypical pneumonia were reported in December of 2019 and quickly spread to all areas of the globe. Within 1 year of those first cases, COVID-19 was declared a pandemic by the World Health Organization (WHO; see Appendix 1 for a glossary of terms and acronyms used in this manuscript). The development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, was a prominent focus during the pandemic, with the aim of reducing the death rate and the number and severity of new cases of COVID-19. Yet 3 years later, there remains a serious public health concern and the need for treatment and prevention is as great as ever, as even fully vaccinated individuals are not completely immune to infection. Early on in the pandemic, many varied conventional and natural therapies were suggested as potential agents to reduce the risk of infection and improve the prognosis of the disease. In this umbrella review, a team of naturopathic researchers supported by the World Naturopathic Federation (WNF) examine the available literature of common natural health products used by patients that are available over the counter or prescribed by naturopathic practitioners and other traditional, complementary and integrative healthcare (TCIH) practitioners for the prevention and/or treatment of COVID-19 and long COVID.
Nutraceuticals in the Prevention and/or Treatment of COVID-19

METHODS

Design
This umbrella review began as a high-level live review monitoring of all narrative and systematic reviews on nutraceuticals and natural treatments for the prevention and symptomatic management of COVID-19 and its sequelae. The umbrella review is part of a six-part review in which this paper focuses on a group of nutraceuticals that are likely of value for the treatment of COVID-19 but do not fit neatly into other categories, such as herbal medicines, vitamins, or minerals. While narrative reviews are not typically included in an umbrella review, this paper included those that met specific criteria in order to provide context to the rationale for considering nutraceuticals in the prevention and/or treatment of COVID-19 and long CV.

Search Strategy
Over the course of 1 year (May 2022–May 2023), monthly literature searches were performed to collect the current and emerging data on natural prevention or treatment of COVID-19. Searches followed Cochrane Guidelines for a live systematic review. PubMed and Google Scholar were searched using the following terms: “natural”, “herb”, “nutraceutical”, “botanical”, “medicinal plant”, “fish oil”, “quercetin”, “melatonin”, “vitamin”, “mineral”, combined with “prevention”, “prophylaxis”, “deficiency”, “treatment”, “management,” and “COVID”, “Coronavirus”, “SARS-CoV-2.” Individual names of nutraceuticals, compounds, vitamins, minerals, and other health protocols were also searched. These papers were then classified as systematic reviews, narrative reviews, meta-analyses, or other based on their description in the abstract.

Inclusion/Exclusion Analysis
Narrative reviews and systematic reviews from the live review were eligible for inclusion in this paper if they were related to the use of the nutraceuticals for the prevention or treatment of COVID-19. Both review types were appraised by at least two blinded reviewers, systematic reviews based on the Assessing the Methodological Quality of Systematic Reviews Version 2 (AMSTAR-2) guidelines and narrative reviews according to the Scale for the Assessment of Narrative Review Articles (SANRA) guidelines. Systematic reviews were included if the review authors, at least partially, accounted for risk of bias (RoB) in individual studies and used a satisfactory technique for assessing the RoB. Narrative reviews were included if the scientific reasoning score was 1 or 2 and the overall total sum >5. Nutraceuticals that appeared in more than three systematic reviews after AMSTAR-2 assessment were included.

PICO eligibility criteria requirements for study inclusion were as follows:

Population: Clinical/observational (humans of any age/gender, any setting), in vivo (including animals), in vitro, or in silico studies.

Intervention: probiotics, melatonin, PUFAs, quercetin, N-acetyl cysteine (NAC), and propolis.

Comparison: No comparator limitation.

Outcome: Symptoms, biological markers, diagnostic criteria, or viral traits related to severe acute respiratory syndrome, viral respiratory tract infections, or COVID-19.

Excluded were secondary analyses, literature reviews, editorial discussions, best practice guidelines, and book chapters. To ensure that results were not overstated, researchers utilized a citation overlap analysis to track the duplication of papers. Due to the diverse topics covered in this umbrella review, a sub-analysis of overlap was also conducted focusing on each of the nutraceuticals covered. The overlap was categorised as “slight” (0%–5%), “moderate” (6%–10%), “high” (11%–15%), or “very high” (>15%) (see Table S1 in the supplemental material for full details of the overlap analysis).

Data Extraction
Data extraction for the systematic and narrative reviews was completed using separate shared, online spreadsheets. Some reviews covered topics that spanned multiple categories of the umbrella review, but only outcomes related to nutraceuticals were extracted for this paper.
Nutraceuticals in the Prevention and/or Treatment of COVID-19

RESULTS

Narrative Reviews

Given that the role of nutraceuticals in the prevention and treatment of COVID-19 is relatively new, narrative reviews were included as they provide an overview of the biochemical properties, and potential therapeutic considerations and they complement the details of the systematic reviews. Of the 93 narrative reviews included in the live review, 16 were originally identified for the nutraceuticals section and 15 were included (see Table 1).

Systematic Reviews

The live review included 308 systematic reviews, of which 43 were initially identified as containing reporting about nutraceuticals; 15 were included (see Table 2). The included systematic reviews were conducted in the Western Pacific region (WPR), European region (EUR), region of the Americas (AMR), South-East Asia region (SEA), the Middle East region (ME), and one each from the Western Pacific region (Australia) and Eastern Mediterranean region (Iran). The individual nutraceuticals covered by these reviews included melatonin, quercetin, PUFAs, probiotics, and NAC.

Systematic Reviews

The live review included 308 systematic reviews, of which 43 were initially identified as containing reporting about nutraceuticals; 15 were included (see Table 2). The included systematic reviews were conducted in the Western Pacific region (WPR), European region (EUR), region of the Americas (AMR), South-East Asia region (SEA), the Middle East region (ME), and one each from the Western Pacific region (Australia) and Eastern Mediterranean region (Iran). The individual nutraceuticals covered by these reviews included melatonin, quercetin, PUFAs, probiotics, and NAC.
<table>
<thead>
<tr>
<th>First Author, Publication year</th>
<th>Region / Country</th>
<th>Area of Focus</th>
<th>Therapies Investigated</th>
<th>Properties / Association (if listed in paper)</th>
<th>Therapeutic Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bader-Larsen KS et al., 2021</td>
<td>EUR / Denmark</td>
<td>Treatment</td>
<td>PUFAs (P)</td>
<td>PUFAs (P): P: anti-inflammatory, immune modulating, neuroprotective. M: anti-inflammatory, neuroprotective, immunomodulatory, anti-inflammatory, immune-modulating, and anti-inflammatory.</td>
<td>M: may play a role in decreasing the severity of CV infection by inhibiting cellular viral entry, suppressing the production of pro-inflammatory cytokines, and increasing the phagocytic capacity of the innate immune system. L: may reduce CV-associated complications, as has been suggested to block the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) activity, which is a key regulator of pro-inflammatory cytokine production, and to downregulate the expression of metastasis-associated protein-1 (MAMTA) and pro-inflammatory cytokine production. Has shown promising promise in addressing the pro-inflammatory state associated with COVID-19, an immunosuppressive state, and may help to control cytokine storm.</td>
</tr>
<tr>
<td>Choe K et al., 2022</td>
<td>SEA / Korea</td>
<td>Treatment</td>
<td>Melatonin (M)</td>
<td>M: anti-inflammatory, immune modulating, immunomodulatory. Q: anti-inflammatory, viricidal, antiviral, inhibits NF-κB, inhibits the acid sphingomyelinase/ceramide system, increases neutrophil chemotaxis, activates NK cells, and prevents cytokine release.</td>
<td>M: may reduce CV–associated complications, as has been suggested to block the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) activity, which is a key regulator of pro-inflammatory cytokine production, and to downregulate the expression of metastasis-associated protein-1 (MAMTA) and pro-inflammatory cytokine production. Has shown promising promise in addressing the pro-inflammatory state associated with COVID-19, an immunosuppressive state, and may help to control cytokine storm.</td>
</tr>
<tr>
<td>Hosseini A et al., 2022</td>
<td>EMR / Iran</td>
<td>Prevention, Treatment</td>
<td>Melatonin (M)</td>
<td>M: antioxidant, anti-inflammatory; increases antioxidant enzymes (e.g., superoxide dismutase), decreases preoxidative enzymes (e.g., nitric oxide synthase) and as a free radical scavenger.</td>
<td>M: may assist long haulers affected by chronic symptoms (chest and heart pain, intestinal disorders, headache, difficulty concentrating, memory loss, and tachycardia).</td>
</tr>
<tr>
<td>Notarbartolo Y et al., 2022</td>
<td>WPR / Australia</td>
<td>Prevention, Treatment</td>
<td>Melatonin (M), Quercetin (Q)</td>
<td>Q: antioxidant, anti-inflammatory, inhibits the acid sphingomyelinase/ceramide system, increases neutrophil chemotaxis, activates NK cells, and prevents cytokine release.</td>
<td>Q: expected to reduce viral replication and support immune response.</td>
</tr>
</tbody>
</table>
TABLE 1 (Part 2 of 2) Narrative Reviews – Nutraceuticals

<table>
<thead>
<tr>
<th>First Author, Publication year (study #)</th>
<th>Area of Focus</th>
<th>WHO Region / Country</th>
<th>SANRA Score / Search details (Y or N)</th>
<th>Therapies Investigated</th>
<th>Properties / Association (if listed in paper)</th>
<th>Therapeutic Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pisoschi AM et al., 2022(28) (262)</td>
<td>Prevention, Treatment</td>
<td>EUR / Romania</td>
<td>6 / N</td>
<td>NAC (N), Melatonin (M)</td>
<td>N: mucolytic, antioxidant, anti-inflammatory, immunomodulatory; M: antioxidant, anti-inflammatory, immunomodulatory, antiviral</td>
<td>N: Oral and intravenous glutathione, as well as precursors like NAC and alpha lipoic acid, constitute therapeutic alternatives to block NF-kB, hamper cytokine storm, and alleviate respiratory symptoms in CV pneumonia.</td>
</tr>
<tr>
<td>Quintal Martínez JP et al., 2022(23) (325)</td>
<td>Treatment</td>
<td>AMR / Mexico</td>
<td>11.5 / Y</td>
<td>Quercetin (Q)</td>
<td>Q: antiplatelet, anticoagulant, fibrinolytic, and nitric oxide regulating effects</td>
<td>Q: may assist in regulating platelet aggregation, blood coagulation, fibrinolysis, and NO production due to their action on multiple receptors and enzymes.</td>
</tr>
<tr>
<td>Savant S et al., 2021(108)</td>
<td>Treatment</td>
<td>SEA / India</td>
<td>8 / N</td>
<td>Quercetin (Q), Probiotics (Pr), PUFA (P)</td>
<td>Q: anti-viral, antioxidant, hypolipidemic / inhibitor of SARS-CoV-2 3CL, affects ACE2 expression, inhibits NF-kB pathway, reduces expression of pro-inflammatory cytokines (IL-6); P: anti-inflammatory / gut-brain axis, gut-lung axis; P: anti-inflammatory / hypolipidemic, regulates fat oxidation by enhancing β-oxidation, improves insulin sensitivity, anti-hyperglycemic function</td>
<td>Q: broad antiviral properties which may be beneficial in the treatment of CV. P: may decrease the spread of infection and decrease duration. P: may be beneficial in the management of CV.</td>
</tr>
<tr>
<td>Shchetinin E et al., 2022(78)</td>
<td>Treatment</td>
<td>EUR / Russia</td>
<td>7.5 / N</td>
<td>Melatonin (M)</td>
<td>M: antioxidant, anti-inflammatory, antifibrotic, psychotropic, anti-viral / decreases the levels of IL-2, IL-4, and IFN-(\gamma), improves sleep.</td>
<td>M: ROC: may decrease mortality, may improve survival of intubated patients and may reduce the risk of delirium in ICU patients. Reduces the risk of thrombosis and sepsis. Labs: may result in a decrease in positive PCR-test for SARS-CoV-2, decrease in CRP levels, and improved CT lung scan.</td>
</tr>
<tr>
<td>Xavier-Santos D et al., 2022(715)</td>
<td>Treatment</td>
<td>AMR / Brazil</td>
<td>7 / Y</td>
<td>Probiotics (Pr)</td>
<td>Pr: antiviral, immunomodulatory, anti-inflammatory, inhibition of microbial adherence, enhancement of the gut barrier function</td>
<td>Pr: may contribute to reducing the duration of the disease and the severity of symptoms such as fatigue, olfactory dysfunction and breathlessness, nausea and vomiting and other gastrointestinal symptoms. Caution: Not recommended for immunocompromised patients on corticosteroid therapy.</td>
</tr>
<tr>
<td>Xerfan E et al., 2022(297)</td>
<td>Prevention / Treatment</td>
<td>AMR / Brazil</td>
<td>8 / Y</td>
<td>Melatonin (M)</td>
<td>M: anti-inflammatory, antioxidant / Role in circadian rhythmic balance, participates in immunomodulatory, metabolic and endocrinological processes</td>
<td>M: Possible direct role of SARS-CoV-2 in the pineal gland/hypothalamus-pituitary axis, and in melatonin receptors in the olfactory bulb. Circadian rhythm dysregulation leads to sleep disturbance which impacts immune function. Melatonin helps regulate circadian rhythms.</td>
</tr>
</tbody>
</table>

3CL=3C-like proteinase protein; ACE2= angiotensin-converting enzyme 2; AMR=region of the Americas; CRP=C-reactive protein; CT=computed tomography; CV=COVID-19; CVD=cardio-vascular disease; EMR=Eastern Mediterranean region; EUR=European region; ICU=intensive care unit; IFN=interferon; IL=interleukin; long CV=long COVID; M=melatonin; MGB=microbiota–gut–brain axis; MMP-3=matrix metalloproteinase-3; N=no; NAC= N-acetyl cysteine; NF=nuclear factor; NK=natural killer; NO=nitric oxide; P=PUFAs; PCR=polymerase chain reaction; PLoP= papain-like protease; Pr=probiotics; PUFAs=poly-unsaturated fatty acids; Q=quercetin; ROC=rate of conversion; SANRA=Scale for the Assessment of Narrative Review Articles; SARS-CoV-2=severe acute respiratory syndrome caused by Coronavirus 2; SEA=Southeast Asian region; USA=United States of America; WHO=World Health Organization; Y=yes.
TABLE 2 (Part 1 of 4) Systematic Reviews – Nutraceuticals

<table>
<thead>
<tr>
<th>First Author, Publication Date (study #)</th>
<th>Area of Focus / WHO Region / Countries in Study</th>
<th>Number of Studies / Design Method / Search Date / Search Databases / Risk of Bias</th>
<th>Intervention</th>
<th>Participants: Number / Sex</th>
<th>Review Objectives and Measurements</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arentz S et al., 2021<sup>44</sup> (675)</td>
<td>Treatment / WPR / Brazil</td>
<td>1 / RCT / 29 April – 15 August 2020 / PubMed, Embase, Central, AMED, Alt Health Watch, medRxiv, bioRxiv, clinicaltrials.gov, ISRCTN, WHO ICTRP / Cochrane RoB-2</td>
<td>Propolis (B) 400 mg to 800 mg QD compared with CWM.</td>
<td>124 / adults mean 50 (±12.8) / all genders</td>
<td>ROC: duration, severity, ROR, ICU admissions, oxygen dependency, AR QoE: low due to small number of studies and differences in study designs.</td>
<td>Improper ROC: decreased duration of hospital admissions; reduced risk of shock, respiratory failure and kidney injury. No ROC improvement: duration of oxygen therapy, risk of ICU admission</td>
</tr>
<tr>
<td>Cheema HA et al., 2023<sup>42</sup> (761)</td>
<td>Treatment / SEA / Pakistan</td>
<td>6 / RCT, MA / database inception until 5 October 2022 / PubMed, Cochrane Library, Embase</td>
<td>Quercetin (Q) 260 to 1000 mg QD compared with CWM.</td>
<td>951 / all ages / all genders</td>
<td>ROC: risk of ICU admission, incidence of hospitalization, mortality QoE: low risk of bias, yet some concerns with randomisation</td>
<td>Improved ROC: decreased the risk of ICU admission (OR=0.31, 95% CI: 0.10–0.99, I<sup>2</sup>=0%) and the incidence of hospitalisation (OR=0.25, CI: 0.10–0.62, I<sup>2</sup>=0%). No ROC improvement: no decrease in risk of all-cause mortality.</td>
</tr>
<tr>
<td>Chen CH et al., 2023<sup>9</sup> (763)</td>
<td>Treatment / WPR / Taiwan</td>
<td>4 / RCTs (3) and observational study / inception to 14 May 2022 / Cochrane Library, PubMed, Embase, Web of Science, and SCOPUS / Cochrane RoB-2</td>
<td>NAC (N) compared to CWM and control</td>
<td>355 / 58.4 ± 4.9 / NS /</td>
<td>ROC: intubation rate, duration of hospital and ICU, mortality QoE: ranged from low to high</td>
<td>Non-significant ROC: RCTs negative for all primary and secondary outcomes; non-randomized studies were mixed with high degrees of heterogeneity regarding in-hospital mortality, respiratory outcome, duration of ICU stay, and hospital stay.</td>
</tr>
<tr>
<td>Dikolithornsakul W et al., 2022<sup>90</sup> (673)</td>
<td>Treatment / WPR / Brazil, Turkey, Egypt, Pakistan, Iran</td>
<td>15 / RCT, case reports / series / database inception to April 2021 / PubMed, Scopus, ScienceDirect, Cochrane Library / Cochrane RoB</td>
<td>Propolis (B) (various dosages and strains) lab changes, 3 RCT compared with CWM.</td>
<td>569 / 18–65, avg female 52, avg male 38 / all genders</td>
<td>ROR: clinical symptoms Binding affinity: SARS-CoV-2 ACE2, protease enzyme, RNA polymerase as the target enzyme, spike protein subunit. QoE: ranged from low to high</td>
<td>Improved ROR: fever, dry cough, shortness of breath, sore throat, chest pain, headache, muscular pain, diarrhea, runny nose, sore larynx, fatigue, nausea, vomiting, dizziness. May help with prevention</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Improved ROR: high binding affinity: to SARS-CoV-2 ACE2, to main protease enzyme, to spike protein subunit 1.</td>
</tr>
</tbody>
</table>
Table 2 (Part 2 of 4) Systematic Reviews – Nutraceuticals

<table>
<thead>
<tr>
<th>First Author, Publication Date (study #)</th>
<th>Area of Focus / WHO Region / Countries in Study</th>
<th>Number of Studies / Design Method / Search Date / Search Databases / Risk of Bias</th>
<th>Intervention</th>
<th>Participants: Number / Age / Sex</th>
<th>Review Objectives and Measurements</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faridzadeh A et al., 2022(733)</td>
<td>Treatment / EMR / Iran</td>
<td>10 / RCTs (5), CTs (3), ORC (2) / Oct 2021 – Jan 2022 / Web of Science, PubMed / MEDLINE, Cochrane Library, SCOPUS / Cochrane RoB tool</td>
<td>Melatonin (M) adjunctive tx</td>
<td>665 / 18 ± 72 / 93 females, 130 males</td>
<td>ROR: platelet aggregation, ROC: recovery time, mortality, incubation Labs: inflammatory markers QoE: low due to small number of studies and differences in study designs.</td>
<td>Improved ROR: thrombosis and sepsis in severe cases Improved ROC: recovery time, mortality rate, incubation outcomes Improved labs: decreased inflammatory markers, inflammatory cytokines, and the expression of some genes, including the STAT4, STAT6, T-bet, GATA binding protein 3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1 (CASP1).</td>
</tr>
<tr>
<td>Lan SH et al., 2022(678)</td>
<td>Treatment / WPR / China</td>
<td>3 / RCTs, MA / April – Aug 2020 / Pubmed, Web of Science, Cochrane Library, Ovid MEDLINE, clinicaltrials.gov / Cochrane RoB</td>
<td>Melatonin (M) – 3 to 6 mg dosage, 7- to 14-day duration compared with CWM and control</td>
<td>86 / NS / NS</td>
<td>ROC: ROR, risk of ICU admission, mortality, QoE: low due to small number of studies and differences in study designs.</td>
<td>Improved ROC: clinical recovery rates were higher (OR 3.67, 95% CI: 1.21 – 11.12; $p=0.02$). Risk of ICU admission (8.3% vs. 17.6%, OR 0.45; 95% CI: 0.16 – 1.25; $p=0.13$). Risk of mortality lower (1.4% [1/72] vs. 4.4% [3/68], OR 0.32; 95% CI: 0.03 – 3.18; $p=0.33$).</td>
</tr>
<tr>
<td>Neris AVS et al., 2022(737)</td>
<td>Treatment / AMR / Turkey, Italy, Mexico, China, Russia</td>
<td>9 / clinical trials, cohort studies / inception through 16 March 2022 / PubMed, Embase, Scopus, Web of Science, ICTRP, BioXiv / Cochrane RoB 2 and ROBINS</td>
<td>Probiotics (Pr) (various strains) along with CWM</td>
<td>1410 / 18–77 / 6 studies both genders, 3 only males</td>
<td>ROR: overall symptoms, cough, headaches, diarrhea ROC: hospital stay, blood oxygenation, ICU admissions, invasive mechanical ventilation Labs: inflammatory markers, CBC, albumin, IgM, IgG QoE: low due to lack of homogeneity between studies and strains of probiotics.</td>
<td>Sig Improved ROR: symptoms 51% reduction (OR 0.49, 95% CI 0.40–0.61), cough (OR 0.56, 95% CI 0.37–0.83), headaches (RR 0.17, 95% CI 0.05–0.65), and diarrhea (RR 0.33, 95% CI 0.12–0.96). Improved ROC: decreased hospital stay, decreased secondary infection, decreased ICU admissions and invasive mechanical ventilation, increased blood oxygenation. Improved labs: CRP, IgM, IgG, ESR, albumin, LYM, PLT, LEU, NK, IL-6</td>
</tr>
</tbody>
</table>
TABLE 2 (Part 3 of 4) Systematic Reviews – Nutraceuticals

<table>
<thead>
<tr>
<th>First Author, Publication Date (study #)</th>
<th>Area of Focus / WHO Region / Countries in Study</th>
<th>Number of Studies / Design Method / Search Date / Search Databases / Risk of Bias</th>
<th>Intervention</th>
<th>Participants: Number / Age / Sex</th>
<th>Review Objectives and Measurements</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraskevas T et al., 2023 (755)</td>
<td>Treatment / EUR / Italy and others not specified</td>
<td>8 / RCT, retrospective observational study, pros cohort, MA / database inception to Sept 2022 / PubMed, Medline, Embase / Cochrane RoB</td>
<td>NAC (N) along with CWM</td>
<td>21141 / >18 years / any sex / Italy plus others not stated</td>
<td>ROR: dyspnea, walking distance ROC: necessity for mechanical and non-invasive ventilation, rate of endotracheal intubation, ICU admissions, mortality, supplemental oxygen, rate of respiratory failure Labs: liver function Imaging: chest computed tomography scan QoE: low due to small number of studies and differences in study designs.</td>
<td>Non-sig ROC: RCTs negative for all primary and secondary outcomes; non-randomized studies were mixed with high degrees of heterogeneity regarding inhospital mortality. Improved ROC: Observational studies suggest favorable results yet have a high degree of heterogeneity.</td>
</tr>
<tr>
<td>Pechlivanidou E et al., 2022 (610)</td>
<td>Treatment / EUR / Mexico</td>
<td>1 / CT / PubMed, CINAHL, Cochrane, database inception to April 2021 / NS</td>
<td>NAC (N) and melatonin (M) along with other NHPs – treatment every 12 h for 5 days</td>
<td>110 / avg 58 / all</td>
<td>ROC: survival rates Labs: inflammation markers, PCT QoE: low due to small number of studies and differences in study designs.</td>
<td>Improved ROC: survival scores Labs: IL-6 decreased (N), CRP decreased (N and M), in NAC and melatonin; PCT decreased (N)</td>
</tr>
<tr>
<td>Sobrinho RCS et al., 2022 (692)</td>
<td>Treatment / AMR / Turkey, Canada, Egypt, Indonesia, India, Brazil, Iran</td>
<td>13 / RCT and others / December 2021 to April 2021 / Central, PubMed, Scielo, Scholar Goggle, SCOPUS, Web of Science / Cochrane RoB</td>
<td>Propolis (various strains) compared with CWM</td>
<td>105 / NS / all genders</td>
<td>ROC: efficacy, length of hospitalization, clinical outcome Binding affinity: SARS-CoV-2 ACE2, protease enzyme, RNA polymerase as the target enzyme, spike protein subunit QoE: low due to small number of studies and differences in study designs.</td>
<td>Potentially improved ROC: varied results, but some studies indicated decreased hospitalization and improved clinical outcomes. Varied results re: binding affinity: interaction with main protease less than remdesivir, but greater than hydroxychloroquine. B has potential to inhibit binding of virus to ACE2.</td>
</tr>
<tr>
<td>Wang XC et al., 2022 (736)</td>
<td>Treatment / WPR / Iran</td>
<td>6 / RCT / Dec 2019 – June 2022 / PubMed, Embase, Web of Science, Cochrane library, clinicaltrials.gov / NS</td>
<td>Melatonin in combination with CWM + control group.</td>
<td>338 / 18-65 / all / Iran</td>
<td>ROR: clinical recovery rate Labs: CRP, SaO2, WBC QoE: low due to small number of studies and differences in study designs.</td>
<td>Improved ROR: improvement in symptoms, improves quality of life when combined with CWM Improved ROR: clinical recovery rate (OR 3.05, 95% CI: 1.47–6.31; p = .003). No sig difference in labs. Reduced adverse reactions</td>
</tr>
<tr>
<td>Xavier-Santos D et al., 2022 (690)</td>
<td>Treatment / AMR / Austria, Romania, Japan + 34 other countries</td>
<td>84 / clinical studies, other studies / Scopus</td>
<td>Probiotics (Pr) (various strains) compared with CWM + Pr</td>
<td>4423 / 1–99 / NS</td>
<td>ROR: gastrointestinal and microbiota, general symptoms ROC: efficacy, prevention Labs: viral entry QoE: low due to small number of studies and differences in study designs.</td>
<td>May decrease risk of infection. Improved ROR: decrease symptoms due to inflammation, decrease diarrhea, Improved ROC: decrease cytokine storm, improved intestinal microbiota, improved immune response, decrease secondary infection, improved gut-brain and gut-lung barriers. Improved labs: NK cells, block viral entry by binding with RdRp, RBD and ACE2, decreased IL-6, increased IL-10</td>
</tr>
<tr>
<td>First Author, Publication Date (study #)</td>
<td>Area of Focus / WHO Region / Countries in Study</td>
<td>Number of Studies / Design Method / Search Date / Search Databases / Risk of Bias</td>
<td>Intervention</td>
<td>Participants: Number / Age / Sex</td>
<td>Review Objectives and Measurements</td>
<td>Findings</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Yao J et al., 2022 (677)</td>
<td>Treatment / WPR / NS</td>
<td>5 / RCTs, MA / database inception until 16 September 2021 / PubMed, Embase, Web of Science, Cochrane Central Register of Controlled Trials, clinicaltrials.gov / Cochrane RoB</td>
<td>Propolis (P) and quercetin (Q) compared with CWM + flavonoids (B and Q), compared with controls</td>
<td>1060 / no restriction / all genders</td>
<td>ROR: symptoms</td>
<td>Sign improved ROR: decreased time for alleviation of symptoms (WMD=−4.92, 95% CI: −7.46 to −2.37, p<.001)</td>
</tr>
<tr>
<td>Zhu J et al., 2023 (767)</td>
<td>Treatment / AMR / USA, Italy, Russia, Mexico, Spain, India</td>
<td>8 / RCTs, MA / database inception until 31 July 2022 / PubMed, Cochrane Library, Embase, CINAHL, clinicaltrials.gov, Cochrane Central Register of Controlled Trials, PROSPERO / Cochrane RoB</td>
<td>Probiotics (various strains) compared to CWM + Pr</td>
<td>1027 / any age / 49.2% male, 50.8% female</td>
<td>ROR: cough, dyspnea, diarrhea, gastrointestinal symptoms, respiratory symptoms</td>
<td>Improved ROR: improved cough and dyspnea (RR 0.37 [0.19 to 0.73]), diarrhea (RR 0.61 [0.43 to 0.87])</td>
</tr>
</tbody>
</table>

ACE2= angiotensin-converting enzyme 2; AMED=Allied and Complementary Medicine Database; AMR=region of the Americas; AR=adverse reactions; B=propolis; CBC=complete blood count; CI=confidence interval; CINAHL=Cumulated Index to Nursing and Allied Health Literature; CNKI=China National Knowledge Infrastructure; CRP=C-reactive protein; CT=clinical trials; CWM=conventional western medicine; EMR=Eastern Mediterranean region; EUR=European region; GI=gastrointestinal; ICU=Intensive care unit; IgG=immunoglobulin G; IgM=immunoglobulin M; IL6=interleukin-6; ISRCTN=International Standard Randomised Controlled Trial Number; M=melatonin; MA=meta-analysis; NAC=N-acetyl cysteine; NK=natural killer; NS=not stated; OR=odds ratio; ORC=observational retrospective cohorts; PCT=procalcitonin; Pr=probiotics; PRISMA=Preferred Reporting Items for Systematic Reviews and Meta-Analyses; PROSPERO=International Prospective Register of Systematic Reviews; PUFA=polyunsaturated fatty acid; Q=quercetin; QD=every day; QoE=quality of evidence; RBD=receptor binding domain; RCT=randomized controlled trial; RdRp=RNA-dependent RNA polymerase; ROC=rate of conversion; ROR=rate of response; RR=relative risk; RT-PCR=reverse transcriptase polymerase chain reaction; SaO2=arterial oxygen saturation; SARS-CoV-2=severe acute respiratory syndrome caused by Coronavirus 2; SEA=South-East Asian region; Sig=significant; TNF=tumour necrosis factor; WBC=white blood cell; WHO ICTR=World Health Organization International Clinical Trials Registry Platform; WHO=World Health Organization; WMD=weighted mean difference; WPR=Western Pacific region.
Asia region (SEA)46,47 and Eastern Mediterranean region (EMR)48 and covered the following nutraceuticals: melatonin,37,38,41,48 probiotics,20,21,26,28,29,30,33 NAC,35,39,40 propolis,34,36,39,41 quercetin,19,47 and PUFA.46 The overlap analysis of the included systematic reviews found 2.6% overlap, which is classified as a “slight” overlap. Sub-analyses by nutraceutical category found “very high” for the reviews covering flavonoids (20%), PUFA (24.2%), propolis (25%), and NAC (25%). “Slight” overlap was found for probiotics (1.3%). Melatonin was only covered in one systematic review and as such the overlap was nil.

Five papers included multiple nutraceuticals and although specific nutraceuticals were listed as being included in the review, those that did not provide adequate details were excluded. Reviews that were excluded if they did not refer to COVID-19. Only individual nutraceuticals that had at least three reviews were included.

Melatonin

Eight narrative reviews addressed the clinical and biochemical properties of melatonin as it relates to COVID-19 treatment and/or prevention. The anti-oxidant (n = 3), anti-inflammatory (n = 6), and immune modulating (n = 4) properties were the main focus of the narrative reviews on melatonin.20,21,26,28,29,30,33 Several of the reviews suggested that the actions of melatonin may be valuable for reducing complications from COVID-19 via suppression of the cytokine storm as well as improving long-term outcomes via neuroprotective effects,26,29,31 and sleep regulation.20,21,29 The benefits of melatonin in high-risk, aging populations and in those with long CV was also covered.25,29,33

Four systematic reviews included melatonin as an intervention. These focused mainly on antioxidant and immunomodulatory properties of melatonin clinical outcomes, including changes in laboratory biomarkers indicating a decrease in inflammation,41,48 and three reported on improved rates of recovery.37,38,48 Lan et al. (2022)37 included a meta-analysis of three small studies, only one of which was double-blinded, which showed a statistically significant improvement in clinical recovery rate (odds ratio [OR]: 3.67; 95% confidence interval [CI]: 1.21–11.12; \(p = 0.02 \)) for patients with COVID-19 treated with melatonin compared with those treated with placebo, but no significant difference in the risk of intensive care unit (ICU) admission (OR: 0.45; 95% CI: 0.16–1.25; \(p = 0.13 \)), mortality (OR: 0.32; 95% CI: 0.03–3.18; \(p = 0.33 \)), the rate of CRP (C-reactive Protein; an inflammatory marker) normalization (OR: 1.14; 95% CI: 0.34–3.89; \(p = 0.83 \)), or values of follow-up CRP (mean difference [MD]: –1.03; 95% CI: –3.47 to 1.42; \(p = 0.41 \)). Wang et al. (2022)48 reported better total effective rate among patients with COVID-19, 18 years of age and older, who were treated with melatonin plus conventional treatments compared with conventional treatments alone (OR = 3.05, 95% CI: 1.47–6.31; \(p = 0.003 \)) in a meta-analysis of six small studies. Again, no significant difference was found for the biomarkers CRP (weighted mean difference [WMD] = –0.36, 95% CI: –3.65 to 2.92, \(p = 0.83 \)), arterial saturated oxygen (\(\text{SaO}_2 \)) (WMD = 1, 95% CI: –1.21 to 3.22, \(p = 0.37 \)), or white blood cell (WBC) count (WMD = –1.07, 95% CI: –2.44 to 0.30, \(p = 0.13 \)).

Probiotics

The four narrative reviews discussing probiotics focused on their potential for prevention through the beneficial manipulation of the gut microbiome.19,24,30,32 Probiotics were ascribed actions such as anti-viral19,30 and anti-inflammatory,19,30,32 mostly in the context of maintaining a functional gut lining and attenuating local and systemic immunity22 and limiting downstream gut–lungs mucosal immune responses.24 Through the microbiome–gut–brain axis and the gut–lungs axis, probiotics were argued to have the potential to reduce the risk of COVID-19 incidence as well as long CV symptoms.21 The four systematic reviews that included studies investigating probiotics all suggested to some degree that the immune modulatory effects of probiotics, likely due to improvement of mucosal barriers of the gut and lung and associated immune monitoring, may be protective against SARS-CoV-2 infection.40,42,44,46 Three of the studies emphasized the benefits of probiotics for gastrointestinal symptoms due to COVID-19.50,42,44 Neris et al. (2022)42 indicated that probiotics were associated with a significant 51% reduction in symptoms reported by COVID-19 patients (relative risk [RR] 0.49, 95% CI: 0.40–0.61). There was a significant improvement in cough (RR 0.56, 95% CI: 0.37–0.83), headaches (RR 0.17, 95% CI: 0.05–0.65), and diarrhea (RR 0.33, 95% CI: 0.12–0.96) of patients on probiotic therapy. These findings suggest that probiotic supplementation is effective in improving symptoms of COVID-19.42

N-Acetyl Cysteine

The one narrative review exploring the value of NAC highlighted its antioxidant, mucolytic, anti-inflammatory, and immune modulating properties and indicated that NAC can alleviate oxidative stress and dampen the cytokine storm, thus having a protective effect on organ damage.24 It described the NAC as able to reduce inflammation by blocking the nuclear factor kappa B (NF-kappa B) pathway, as a precursor to glutathione, and as a free radical scavenger.24 Three systematic reviews included NAC, of which two reported on studies focused on NAC alone35,40 and one synthesized study involving NAC alongside other nutraceuticals.41 While one systematic review did find that NAC can reduce inflammatory markers interleukin-6 (IL-6), CRP, and procalcitonin (PCT),41 none of the systematic reviews found a relation between NAC treatment and reduced hospital stays, ICU admissions, or mortality.35,40

Quercetin

Two of the three narrative reviews describing research related to quercetin emphasized its antiviral, antioxidant, and hyperlipidemic properties.20,30 Savant et al. (2021)20 stated quercetin has broad antiviral properties and is specifically an inhibitor of SARS-CoV-2,20 while Quintal Martinez et al. (2022)30 highlighted quercetin’s antiplatelet, anticoagulant, fibrinolytic, and nitric oxide (NO) regulating effects.23 The reviews suggest that, due to its antiviral activity and other targets of action, quercetin could play a role in prevention and to help reduce recovery time from COVID-19.

The two systematic reviews on quercetin focused on the treatment benefits of supplementation, and both reported similar
findings. The two reviews were in general agreement and their conclusions were summarized nicely by Cheema et al. (2023), who concluded that "quercetin decreased the risk of intensive care unit admission (OR = 0.31; 95% CI: 0.10–0.99) and the incidence of hospitalization (OR = 0.25; 95% CI 0.10–0.62) but did not decrease the risk of all-cause mortality and the rate of no recovery and that quercetin may be of benefit in COVID-19 patients but large-scale RCTs [randomized controlled trials] are needed to confirm these findings."

Propolis

No narrative reviews on propolis met the inclusion criteria. However, four systematic reviews were included. Three of the reviews looked mostly at clinical outcomes of COVID-19, including symptom severity, duration of illness, duration of hospitalization, and duration of respiratory support. The rate of recovery results reported by Sobrinho et al. (2022) were not as positive as the other three papers, but the focus of this paper was more on the biochemical actions of propolis, which were stated to be anti-inflammatory, immunoregulatory, and anti-COVID-19 effects, including protein kinase-1 (PAK-1) inhibition and binding to angiotensin-converting enzyme 2 (ACE2), one of the main routes of infection for SARS-CoV-2. All systematic reviews were in agreement that propolis may be useful but further research into the efficacy for the treatment of COVID-19 is needed to confirm.

Polyunsaturated Fatty Acids (PUFAs)

The five narrative reviews that included PUFAs highlight their anti-inflammatory, antioxidant, and immune modulating properties. Paudel et al. (2022) and Gareau et al. (2023) focused on the ability of PUFAs to modulate immune system functions through alterations in the gut microbiome. Although each of these reviews provides some analysis of PUFAs and their effect on COVID-19, they are relatively inconsistent with regard to the form of PUFA assessed and the outcomes measured. For instance, Bader-Larsen et al. (2021) cautioned against the supplementation of omega-3 fatty acids in cancer patients (despite also suggesting it may be beneficial for COVID-19 symptoms) and barely mentions PUFAs other than to mention that short chain fatty acids (SCFAs) may be helpful for relieving gastrointestinal symptoms associated with SARS-CoV-2 pathology. The systematic review by Aldhafiri et al. (2022) was the only review focused on PUFAs included. It indicated that PUFAs together with probiotics may shorten the duration of COVID-19 and may have a direct effect on decreasing inflammation and gastrointestinal symptoms.

DISCUSSION

COVID-19 is a highly communicable disease caused by SARS-CoV-2 infection leading to a wide range of clinical manifestations, from mild forms, such as fever, cough, and myalgia, to moderate forms requiring hospitalization (pneumonia and localized inflammation), to severe/critical forms with fatal outcomes. As vaccine efficacy can be jeopardised by the rapid emergence and spread of SARS-CoV-2 variants, there remains a need for therapies to reduce the severity and duration of COVID-19 as well as long COVID. Three key areas where nutraceuticals may provide benefit relate to prevention, immune modulation, and anti-inflammatory support and supporting aging and high-risk populations.

Prevention

A focus on prevention reduces the likelihood of contracting COVID-19 and reduces the risk of long CV. Of the nutraceuticals discussed, probiotics may have a unique role to play in reducing the risk of contracting COVID-19 as well as the risk or severity of long CV symptoms. The interaction of the gut microbiome with the immune system and the subsequent effects on inflammation, mental health, and a host of other health outcomes is no longer a novel concept. While tailoring the microbiome to precise parameters is not yet (and may never be) a possibility, we are aware of measures that may be taken to alter the gut microbiome to a state of eubiosis or a composition that is beneficial for human hosts. It is generally believed that certain beneficial bacteria generate certain SCFAs, such as butyrate, propionate, and acetate, that appear to be key mediators of the beneficial effects elicited by the gut microbiome. Microbial SCFA production is essential for gut integrity by regulating the luminal pH and mucus production, providing fuel for epithelial cells, and procuring beneficial effects on mucosal immune function. SCFAs also directly modulate host metabolic health through a range of tissue-specific mechanisms related to appetite regulation, energy expenditure, glucose homeostasis and immunomodulation, leading the immune system to better recognize infectious agents and to suppress the unnecessary activation of the innate inflammatory response. Therefore, increased microbial SCFA production can be considered a health benefit. Given this potential, further studies of probiotics (as well as synbiotics, prebiotics, and postbiotics) are warranted to determine how much benefit they can provide, the expected time frame to show effects, dosing, and the most effective species to prevent and treat COVID-19.

Immune Modulating and Anti-Inflammatory Support

Many of the nutraceuticals in this paper are anti-inflammatory or immune modulating. NAC, for instance, is a precursor molecule to glutathione, the most important low-molecular-weight antioxidant synthesized in cells. COVID-19 leads to an immune response resulting in what is known as a cytokine storm. Long CV may develop via mechanisms involving neuroinflammation owing to unique signaling pathways and blood–brain barrier dysfunction, persistent inflammation related to an altered homeostatic milieu and organs, persistence of proinflammatory cells, altered cytokine production, and altered immune metabolic pathways in the lingering inflammatory response of the SARS-CoV-2 infection COVID-19. Anti-inflammatory and immune modulation would seemingly be the ideal properties needed to combat these effects of SARS-CoV-2. Although the nutraceuticals breadth of research in this field is limited, of the nutraceuticals covered in this review, NAC and quercetin seem to have the potential for the
greatest benefit, NAC given its particular role as a precursor to one of the most important antioxidants in the body, and quercetin as it seems to be a potent inhibitor of the interaction between spike glycoproteins of SARS-CoV-2 and the ACE2 receptor. In addition, active compounds in propolis and honey have anti-inflammatory properties. Galangin, an active compound in propolis, has been shown to inhibit tumor necrosis factor-α and interleukin-8, leading to a decrease in tissue inflammation and clinical symptoms. PUFAs’ primary role is anti-inflammatory, reducing systemic inflammation and infections.

Aging and High-Risk Populations
Older adults and those with comorbidities are at greater risk for developing COVID-19 and have worse outcomes. Many of the nutraceuticals studied in this paper may be beneficial indirectly as they are associated with decreasing the risk of comorbidities such as diabetes, cardiovascular disease, gastrointestinal diseases, and others. Melatonin warrants further consideration and research as it is well known that melatonin levels are often significantly lower in the elderly and are associated with decreased immune function. Melatonin protects against cellular damage induced by reactive oxidative species due to its anti-inflammatory and antioxidant effects, and promotes an adaptive immune activity.

Limitations
Although the results of many nutraceuticals are promising, there are not nearly enough quality studies available to truly understand the significance of any of the above-mentioned nutraceuticals in their therapeutic role for COVID-19 or long CV treatment and prevention. Further studies are warranted to understand optimal effectiveness, dosing, and delivery methods for any of the nutraceuticals considered above. When interpreting the results, it is important to note that there was great heterogeneity between studies within most of the reviews and much more so between systematic reviews. Many of the studies included in the reviews also had small sample sizes, which limits the statistical power and generalizability of the findings. It is also important to note that there was very high overlap across systematic reviews for some of the nutraceuticals studied. This has implications for this umbrella review as it is important not to overemphasize findings arising from different systematic reviews if the reviews themselves draw upon the same original research articles. However, the high level of overlap is also an important finding for the wider research community investigating natural health products as it suggests significant duplication in research efforts have occurred during the COVID-19 pandemic, and that greater coordination is needed to avoid such duplication in the future.

CONCLUSION
The need for COVID-19 treatments remains significant, even after the development of effective vaccines. The antioxidant, anti-inflammatory, antiviral and immune modulatory characteristics make the nutraceuticals included in this review reasonable choices for further research. Additional high-quality randomized controlled trials with large sample sizes are required to fully determine their efficacy, with the inclusion of recommendations on dosing and administration. Of the nutraceuticals discussed above, probiotics, melatonin, NAC, and quercetin appear to have the greatest potential for benefit in the prevention and treatment of COVID-19 and long COVID.

17. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008

APPENDIX 1: GLOSSARY OF TERMS

ACE2 = angiotensin-converting enzyme 2
AMA = American Medical Association
AMR = region of the Americas
AMSTAR-2 = Assessing the Methodological Quality of Systematic Reviews Version 2
CI = confidence interval
CV = COVID-19
EMR = Eastern Mediterranean region
EUR = European region
ICU = intensive care unit
IL-6 = interleukin-6
long CV = long COVID
NAC = N-acetyl cysteine
NF = nuclear factor
NK = natural killer
NO = nitric oxide
OR = odds ratio
PAK1 = protein kinase-1
PCT = procalcitonin
PUFA = polyunsaturated fatty acid
RCT = randomized controlled trial
RoB = risk of bias
RR = relative risk
RTI = respiratory tract infection
SANRA = Scale for the Assessment of Narrative Review Articles
SARS-CoV-2 = severe acute respiratory syndrome caused by Coronavirus 2
SCFA = short chain fatty acid
SEA = Southeast Asian region
TCIH = traditional, complementary and integrative healthcare
WBC = white blood cell
WHO = World Health Organization
WMD = weighted mean difference
WNF = World Naturopathic Federation
WPR = Western Pacific region